柱状砕石補強体を用いた地盤補強工法(ハイスピード工法)による支持力特性 (複合地盤の地盤補強効果の確認と液状化に対する効果)

柱状砕石補強体, 地盤補強工法, 支持力特性 液状化

1. はじめに

柱状砕石補強体を用いた地盤補強工法は、支持力度の増大 と不同沈下の抑制に効果がある^{1),2)}.本報告は,載荷板の形状 と柱状砕石補強体の配置を変えた載荷試験の結果、および東 日本大震災での戸建て住宅の液状化被害について報告する.

2. 試験概要

本工法の地盤補強効果を確認するため、載荷板の形状と柱 状砕石補強体の配置を変えた載荷試験を行い、原地盤の支持 力度と柱状砕石補強体を用いた補強地盤の支持力度を比較し た. 柱状砕石補強体の径は 400, 6450, 6550 の3 種類で ある. 試験で用いた載荷板は 1000mm×1000mm=1m², 1380mm×1380mm=1.9m²の正方形板および 1540mm× 650mm=1m²の長方形板である.置換率(柱状改良体面積/載 荷板面積)は0.126~0.252 である.表1に載荷板の形状と置換 率を示す. 試験体の名称は, 例えば, 「G1000-1」は「G」: 原 地盤,「1000」:載荷板の長辺,「1」:通し番号である.試験地 盤は、粘性土地盤5箇所(富山県氷見市、愛媛県西予市、愛媛 県松山市,愛媛県八幡浜市,栃木県宇都宮市)と砂地盤3箇所 (高知県香南市,岡山県瀬戸内市,徳島県徳島市)である.

3. 試験結果

図1に原地盤と補強地盤の支持力度の比較を示す.ここでは, 粘性土地盤と砂質土地盤を1例ずつ示す.柱状砕石補強体を用 いた補強地盤は、原地盤より支持力度は大きく、地盤補強効 果が認められる.載荷板の形状の違いによる支持力度の差はな いことがわかった.

図 2,表 3 に設計の長期支持力度と載荷最大荷重度の比較 を示す.設計の長期支持力度は、原地盤部の支持力度と砕石 部の支持力度を置換率に応じて負担割合を決め計算したもの である.表2に示す試験の長期荷重度は、*1印のものは短期 荷重度程度までの載荷であるため2で除し、*2印のものは極

	1 12	車以1月1次 0ノ ハン・	仏と直換平	
	円φ300, φ400	長方形	正方形	正方形
	$\square \phi 4 3 0, \phi 3 3 0$	1040×000	1000~1000	1000/1000
原地盤	0			
砕石補強		A:		
地盤		в:		
置搬索	1	$A:0.126{\sim}0.237$	0.126	0.125
E.R+	1	B:0.252	0.120	0.120

世古の いい し 里梅 家

The Bearing capacity Characteristics by Settlement analysis based on Groundreinforcement with Crushed stone pile

正会員	小串	隼人*	同	堀田	誠*
同	杉野	真衣子*	同	宮原	寛幸*

限荷重まで載荷したため3 で除したものである.長期荷重度 を比較すると平均で 1.9 倍程度実験値の方が大きく、計算値 は安全側の評価となっている. なお,実験値/計算値の比の 最小が、わずかに1を下回る試験体は、試験の反力が不足し たため、途中で試験を中止したものである.また、設計式に よる長期許容支持力度時の沈下量は最大でも 18mm と実用上 問題とならない沈下量であることを確認した.

長期許容支持力度(kN/m2) 図 2 載荷の長期荷重度と長期許容支持力度の比較

100

150

200

50

0

0

表 2 設計	トの長期何重度	と載何最ス	大何重度の比戦
--------	---------	-------	---------

番号	名称	載荷板 (mm)	改良径 (mm)	置換率	土質	実験値(kN/m ²)		計簋値	実験値
				as (試験タイプ)		最大値	長期荷重度	(kN/m^2)	計算值
18	HYS1000-1	1000×1000	φ 400	0.126	粘性土	170.0	85.0	53.5	1.59
21	HYS1540-1	1540×650	φ 400	0.252 (B)	粘性土	170.0	85.0	75.8	1.12
27	HYS1000-2	1000×1000	φ 400	0.126	粘性土	180.0	90.0	70.0	1.29
30	HYS1540-2	1540×650	φ 400	0.252 (B)	粘性土	180.0	90.0	88.5	1.02
36	HYS1000-3	1000×1000	φ 400	0.126	粘性土	200.0	100.0	79.4	1.26
39	HYS1540-3	1540×650	φ 400	0.252 (B)	粘性土	200.0	100.0	95.8	1.04
45	HYS1000-4	1000×1000	φ 400	0.126	粘性土	200.0	100.0	99.7	1.00
48	HYS1540-4	1540×650	φ 400	0.252 (B)	粘性土	200.0	100.0	111.5	0.90
55 56	HYS1000-5 HYS1000-6	1000×1000	ϕ 400	0.126 (A) 0.126 (B)	砂質土	200.0	100.0^{*1}	38.5	2.60
59	HYS1540-5	1540×650	φ 400	0.126 (A)	砂質土	200.0	100.0	38.9	2.57
65	HYS1000-7	1000×1000	$\phi 400$	0.126	砂質土	200.0	100.0	38.0	2.63
68	HYS1540-6	1540×650	φ 400	0.126 (A)	砂質土	200.0	100.0	38.4	2.61
72	HY1000(400)-1	1000×1000	φ 400	0.126	砂質土	300.0	100.0 2	36.2	2.76
74	HY1000(450)-1	1000×1000	φ 450	0.159	砂質土	451.2	150.4	43.4	3.47
78	HY1540(550)-1	1540×650	φ 550	0.237 (A)	砂質土	504.0	168.0	60.4	2.78
79	HY1000(550)-1	1000×1000	φ 550	0.238	砂質土	400.0	133.3	60.2	2.22
80	HY1380(550)-1	1380×1380	φ 550	0.125	砂質土	420.1	140.0 2	38.0	3.69
85	HY1000(400)-2	1000×1000	φ 400	0.126	粘性土	280.3	93.4 2	63.7	1.47
87	HY1000(450)-2	1000×1000	φ 450	0.159	粘性土	300.2	100.1	69.8	1.43
91	HY1540(550)-2	1540×650	φ 550	0.237 (A)	粘性土	349.8	116.6	81.1	1.44
92	HY1000(550)-2	1000×1000	φ 550	0.238	粘性土	282.7	94.2	84.2	1.12
93	HY1380(550)-2	1380×1380	φ 550	0.125	粘性土	253.0	84.3*2	60.8	1.39
								平均	1.88

KOGUSI Hayato,HOTTA Makoto MIYAHARA Hiroyuki,SUGINO Maiko

4. 東日本大震災後の液状化による不同沈下の調査概要

震災後の調査は、東日本を中心に1都7県で合計219物件 について行った.調査方法は、目視により基礎梁に異常があ るもの及び液状化被害を受けたものはレベル測定を行った. 多くの物件は、被害を受けていないことがわかったが、茨城 県の3件(後出)は液状化により不同沈下が生じていた.

5. 調査結果

茨城県神栖市賀の物件(写真 1)は、土間コンクリートが 15cm 程持ち上がり、基礎の脇から水が噴き出した跡があっ た.液状化の影響で、北西から南東へ約 70mm 傾斜していた. 茨城県神栖市深芝の物件(写真 2)は、外溝のフェンスが大き くたわみ、側方流動のため舗装が開いていた.墳砂は多かっ たが、基礎にはクラックなどは見られなかった.北西から南 東に約 60mm 傾斜していた.茨城県神栖市深芝の物件(写真 3)は、北方向から南方向へ約 15mm 傾斜していた.基礎にク ラックなどは入っていなかった.結果として 3 物件とも、周 辺の建物と比べて被害は少なかった.また、不同沈下の度合 いは、周辺の建物で傾きが 20/1000~60/1000 であったのに対 し 2/1000~6/1000 であった.表 3 にこれらの調査結果をまと めたものを示す.

図3,図4は、茨城県神栖市深芝の物件(写真3)の柱状砕石 補強体の設置と地盤調査データである.調査データを見てもわ かるようにすべて砂質土で、GL-1.00m~-5.00m 付近まで N値1~3程度の軟弱な層であることがわかり、液状化しや すい土地であることがわかる.この物件は、支持力について 検討したもので、液状化については検討していない.液状化 について検討する場合は、建物の外側にも柱状砕石補強体を 配置し、厚さ300mm~500mmの砕石透水マットを施工する ことで、地震発生時の過剰間隙水圧を抑制する.

7.まとめ

載荷試験の結果,実験の長期荷重度は,設計値の長期許容 支持力度に比べ平均で1.9倍あり,設計値は安全側である.

震災後の調査結果より、本工法は築造された柱状砕石補強 体の隙間に水が通るため、土中の水圧上昇が抑えられ液状化 の影響を抑制できると考えられる.また、砕石柱状体の支持 力及び、砕石柱状体周辺の原地盤の締固め効果によるものと 考えられる.今回の調査物件の設計は支持力検討のみで、液 状化対策をしていないにも関わらず、被害が小さかった事か ら液状化対策設計をすることでより効果があると考えられる. しかし、今後の課題として液状化発生時の砕石柱状体の透水 係数の変化、また経年変化の検証が必要であると考えられる.

参考文献

- 堀田ほか:柱状砕石補強体を用いた地盤補強工法(ハイスピード工法) による地盤改良効果,日本建築学会大会学術講演梗概集,pp.575~576, 2011.8
- 2) 宮原ほか:柱状砕石補強体を用いた地盤補強工法(ハイスピード工法) による支持力特性,日本建築学会大会学術講演梗概集,pp.577~578, 2011.8
- 3) 建設省土木研究所耐震技術研究センター動土質研究室ほか:液状化対策 工法設計・施工マニュアル(案) pp.136~152, 1999.3

図4 地盤調査データ

表3 液状化した地域の建物不同沈下調査結果一覧

県名	地名	砕石柱状体長さ	本数	基礎形状	不同沈下量	
		6	19			
-	神植市置	4.5	18		6.4/1000	
次擴展		2.75	9	ベダ番号		
		1.5	s			
茨城県	神植市深芝	5.25	28	布基礎	6.0/1000	
	神植市深芝	6.25	8	4.000	2.2/1000	
決張県		5.25	20	伸基堤		
茨城県	稲敷市	1.50	69	ベタ基礎	被害なし	

*ハイスピードコーポレーション株式会社

*Hyspeed corporation